CHAPTER improving its quality. Due to these advantages they

CHAPTER 1                                             INTRODUCTIONINTRODUCTION         Multilevelinverter continues to receive more attention because of their high voltagecapability and efficiency, high EMI. Low switchinglosses. Nowadays multilevel inverters are becoming increasingly popular inpower applications , as multilevel inverter are becoming increasingly popularin power applications, as multilevel inverters have the ability to meet theincreasing demand of power rating and power quality with reduced harmonicdistortion and lower EMI       Multilevel inverter has advantages overthe conventional two-levels inverters that uses several switches to achieve forhigh switching frequency Pulse Width Modulation(PWM).

Multilevelinverter uses number of power semiconductor switches, dcsources(batteries/capacitors) to synthesize staircase output voltage waveform.By increasing number of levels the output voltage waveform approaches near tosine wave improving its quality. Due to these advantages they found wideapplications in adjustable speed drives, HVDC, FACTS, wind farms, photovoltaicsystems, electric vehicles and so on    Multilevel inverter has advantages over the conventional two levelsinverter that uses several switches to achieve  for high switching frequency Pulse width modulation(PWM).Multilevelinverter has some features are as follow: Lowdistortion and lower dv/dt  can begenerated. Multilevelinverter can draw input current with very low distortion.Multilevel inverter generate smallcommon mode voltage.

Best services for writing your paper according to Trustpilot

Premium Partner
From $18.00 per page
4,8 / 5
4,80
Writers Experience
4,80
Delivery
4,90
Support
4,70
Price
Recommended Service
From $13.90 per page
4,6 / 5
4,70
Writers Experience
4,70
Delivery
4,60
Support
4,60
Price
From $20.00 per page
4,5 / 5
4,80
Writers Experience
4,50
Delivery
4,40
Support
4,10
Price
* All Partners were chosen among 50+ writing services by our Customer Satisfaction Team

Multilevel inverters can be operate withlower switching frequency MLISTRUCTURES                Multilevel inverters have anarrangement of power switching devices and capacitor voltage sources.Multilevel inverters are suitable for high-voltage applications. It haveability to synthesize output voltage waveforms with a better harmonic spectrumand it  attain higher voltages with alimited maximum device rating.

  Thereare three main types of multilevel inverters: Diode-clamped (neutral clamped)Capacitor-clamped (flying capacitors)Cascaded H bridge inverter                                                                                                                                                Fig.1.1 Classification  of multilevel inverters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.2.

1Diode Clamped               The diode –clamped inverter isalso known as the neutral-point clamped inverter(NPC) which was introduced bynabe at al(1981).The diode-clamped inverter consist of two pairs of seriesswitches (upper and lower)in parallel with two series capacitors where theanode of the upper diode is connected to the midpoint(neutral) of thecapacitors and its cathode to the midpoint of the upper pair of switches; thecathode of the lower diode is connected to the midpoint of the capacitors anddivides the main DC voltage into smaller voltages. The middle point of the twocapacitors can be defined as the “neutral point”. The NPC uses  single DC bus that is subdivided into anumber of voltage levels by series strings of capacitors.

1.2.1.1Operationof Diode-clamped              Threelevel diode-clamped converter in which the dc bus consist of two capacitor,. For dc-bus voltage , the voltage acrosseach capacitors is  and each device voltage stress will be limitedto one capacitor voltage level  through clamping diodes. To explain how thestaircase voltage is synthesized, the neutral point n is considered  as the output phase  voltage reference  point. There are three switch combination tosynthesize three-level voltages across a and n.

Voltage level  turn on the switches  and Voltage level, turn on the switches  and Voltage level  turn on the switches            For a three-level diode-clampedinverter if point 0 is taken as the ground reference, the output voltage hasthree states 0, +   and Vdc . Theline-line voltages of two legs with the capacitors are  ,, -. Threephases are necessary to generate a three-phases voltages.                                                                                                                                                               Fig.1.2 Diodeclamped MLI   1.2.

1.2Features of Diode-clampedHigh voltage rating required forblocking diodesUnequal device ratingCapacitor voltage unbalance1.2.1.3Diode- Clamped MLI ApplicationStatic var compensationVariable speed motor drivesHigh voltage system interconnectionsHigh voltage dc and ac transmission lines1.

2.1.4Advantageof Diode-Clamped All of the phases share a common dc bus,which minimize the capacitance requirements of the converter.

For this reason,a back-back topology is not possible but also practical for uses such as ahigh-voltage back-back inter- connection or an adjustable peed drive.The capacitors can be pre-charged as a group.Efficiency is high for fundamentalfrequency switching. When the number of levels is highenough, harmonic content will be low enough to avoid the need for filters .1.2.

1.5Disadvantage of Diode-clampedReal power flow is difficult for asingle inverter because the intermediate dc levels will tend to overcharge ordischarge without precise monitoring and control.The number of clamping diodes isquadratically related to the number of levels, which can be cumbersome forunits with a high number of levels. 1.

3.1Capacitor-clamped            The capacitor clamped inverteralternatively known as flying capacitor was proposed by meynard and foch in1992. The structure of this inverter is similar to that of diode clampedinverter except that instead of using clamping diodes, the inverter usescapacitor involves series connection of capacitor clamped switching cells. Thistopology has a ladder structure of dc side capacitor, where the voltage on eachcapacitor differs from that instead of next capacitor. The voltage incrementbetween two adjacent capacitor legs gives the size of the voltages steps in theoutput waveform.

1.3.1.1Operation of FCMLI               In the operation of flying capacitor multi-levelinverter, each phase node( can  beconnected to any node in the capacitor bank, . Connection of thea-phase to positive node  occurs when  and  are turned on and to the neutral point voltagewhen  and  are turned on. The negative node  is connected when  and  are turned on.

The clamped capacitor c1 ischarged when , ans  are turned on and is discharged when  and  are turned on the charge capacitor can bebalanced by proper selection of the zero states. In comparisons to three-leveldiode-clamped inverter, an extra switching state is possible. In particular,these are two transistor states which make up the level. Considering thedirection of the a phase flying capacitor current  for the redundant states, a decision can bemade to charge or discharge the capacitor and therefore , the capacitor voltagecan be regulated to its desired value by switching within the phase. As withthe three-level flying capacitor and therefore, the capacitor voltage can beregulated to its desired value by switching within the phase.as with thethree-level flying capacitor inverter, the highest and lowest switching statesdo not change the charge of the capacitors. The two intermediate voltage levelcontain enough redundant states so that both capacitors. The two intermediatevoltage levels contain redundant states so that both capacitors can beregulated  to their ideal voltages.

Similarto the diode clamped inverter clamping requires a large number of bulkcapacitor to clamp the voltage. Provided that the voltage rating of each  capacitor used is the same as that of themain power switch, an N level converter will require a total of  clamping the flying-capacitor inverter does not require all of the switches thatare on (conducting) in a consecutive series. Moreover, the flying-capacitor inverterhas phase redundancies 1, 3. These redundancies allow a choice of  charging /discharging specificcapacitors  and can be incorporated inthe control system for balancing the voltages across the various levels.

Thevoltage synthesis in a five level capacitor-clamped converter has more flexibilitythan a diode-clamped converter. Capacitor-clamped multilevel invertertopologies are relatively new compared to the diode-clamped or the cascadedH-bridge cell inverter topologies. Redundancy in the switching states is available by using flying capacitorsinstead of clamping diodes. This redundancy can be used to regulate thecapacitor voltages and obtain the same desired level of voltage at the output.Figure 1.3 shows a single-phase five-level capacitor-clamped multilevelinverter topology.

The voltage across the capacitors is considered to be halfof DC source voltage Vdc . The output voltage consists of fivedifferent voltage level  Vdc,-Vdc,0,Vdc, Vdc .                        Fig.1.

3 Topology ofcapacitor clamped MLI1.3.1.2Advantages of  FCMLILarge ‘n’ allows the capacitors extraenergy during long discharge transient.Phase redundancies are available forbalancing the voltages levels of the capacitors Lower total harmonic distortion when thenumber of levels ‘n’ is highActive and reactive power flow can becontrolled.

Added clamping diode are not neededThe required number of voltage level canbe achieved without the use of the transformer. The assists in reducing thecost of the converter and again reduces power loses Series string of capacitor clamped sharethe same voltage.The capacitor within the phase leg arecharged to different levels. The large number capacitors enables theinverter for deep voltage sag.